
Blockchain identity verification for class polls

Fadil Amiruddin, Sanjay Mohan Kumar

Abstract

This project develops a blockchain-based system to prevent cheating in in-class polls

by ensuring secure and private user verification. By incorporating Zero-Knowledge Proofs

and blockchain technology, the system provides a tamper-proof and decentralized method

for validating user identities, thus preserving the integrity of the educational assessment

process and ensuring fair evaluations of student performance.

Contents

1 Introduction - The Problem 3
1.1 Importance of addressing this issue . 3

2 Application of Blockchain technology 3
2.1 Blockchain interaction with dock.io . 3
2.2 Our Process . 4

3 Related works - Proof of Personhood (PoP) 5

4 Challenges in our Project 6

5 Code Documentation 7

6 Home 8
6.1 Relevant code . 8

7 Teacher Login 8
7.1 Relevant code . 8

8 Teacher Login 9

9 User Sign-Up Process 9
9.1 Logging In . 11

1

10 Teacher Account for Quizzy499 12
10.1 Teacher Dashboard . 12

11 Adding a New Class 14
11.1 Flask Code for Adding a New Class . 14
11.2 HTML for Adding a New Class . 15

12 Delete Class 16
12.1 Flask Code for Deleting a Class . 16
12.2 HTML Markup for Deleting a Class . 17

13 Add Student 18
13.1 Flask Code for Adding a Student . 18
13.2 HTML Markup for Managing Classes . 19

14 Student Login 20
14.1 Implementation Details . 20

14.1.1 Flask Route . 20
14.1.2 HTML Form . 21

15 Student Sign-Up 21
15.1 Registration Route . 21

16 Quiz Retrieval 22
16.1 Implementation Details . 22

16.1.1 Flask Route . 22
16.1.2 AJAX Request . 22

17 Quiz Submission 22
17.1 Implementation Details . 22

17.1.1 Flask Route . 23
17.1.2 HTML Form . 23

18 Quiz Generation 23

19 Adding and Verifying a student in the class. 24

20 Dockcert API Integration 24

21 Mailchimp API Integration 26

22 Verification Process 27

2

23 Retrieving Verified Users 27

1. Introduction - The Problem

In recent years, the integrity of in-class polling systems in educational environments has been
compromised by the prevalence of cheating, which skews assessment outcomes and misrep-
resents student performance. Traditional verification methods often fall short, as they are sus-
ceptible to manipulation and fail to offer a secure means of authenticating user identities. To
address this issue, our project proposes the development of a blockchain-based verification sys-
tem that utilizes the principles of Zero-Knowledge Proofs (ZKPs) to ensure both the security
and privacy of user data. By leveraging the immutability and decentralized validation capabil-
ities of blockchain technology, our solution aims to establish a robust framework that prevents
unauthorized access and ensures that each vote in class polls is accurately recorded and remains
unaltered. This initiative not only enhances the credibility of polling results but also reinforces
the fairness and accuracy of the educational assessment process.

1.1 Importance of addressing this issue

Addressing the problem of cheating in in-class polls is crucial for maintaining the integrity of
educational assessments. Accurate and fair polling ensures that student performance is evalu-
ated correctly, which is fundamental to both academic credibility and the effectiveness of the
educational system. Implementing a secure verification system thus protects against biases and
enhances the reliability of the outcomes, fostering a more honest and equitable educational
environment.

2. Application of Blockchain technology

2.1 Blockchain interaction with dock.io

The Dock blockchain is purpose-built to support decentralized identity and the issuance, man-
agement, and verification of digital credentials securely and privately. It operates as an immut-
able registry for decentralized identifiers (DIDs), which are unique, verifiable identifiers that
do not require a centralized registry. These DIDs are used to validate the credentials’ issuance
without needing to reveal the identity of the issuer or the individual. This system enhances trust
and privacy as the verifier can simply check the authenticity of the credential against the DID
listed on the Dock blockchain without needing to directly interact with the personal data of the
individual.

3

The use of Zero-Knowledge Proofs (ZKPs) plays a crucial role in further securing these in-
teractions. ZKPs allow a user to prove possession of certain information or qualifications
without revealing the information itself. This capability is key in contexts where privacy is
paramount—such as in verifying age or residency without disclosing specific details like the
birth date or home address. By allowing for selective disclosure, Dock not only ensures compli-
ance with stringent privacy laws but also mitigates the risk of personal data being compromised.
This technology integration positions Dock as a robust platform for managing digital identities
in a secure and user-centric manner.

On the blockchain, the verification process incorporates on-chain elements to ensure security
and trust without compromising privacy. Key components stored on-chain include Decentral-
ized Identifiers (DIDs) for credential issuers, which are linked to their public keys and verific-
ation methods, credential schemas that outline the structure and standards for the credentials
issued, and revocation registries that track the status of issued credentials, allowing issuers to
revoke them if necessary. This infrastructure supports the verification of credentials’ authen-
ticity by allowing any participant in the network to independently confirm the validity of the
issuer and the credential status directly via the blockchain, ensuring that the actual credentials
and personal user data remain off-chain to protect privacy.

Figure 1: Interactions between users, versifiers, and the blockchain

2.2 Our Process

Our process using the blockchain to verify users with this technology works as follows. From
our application, when the user (a class professor in our case) wants to create a new class and
add students, they create an "Organization Profile" which issues a new DID and puts it on the
chain. To add students they then issue credentials to each student one by one, and which will
anchor it to the blockchain by publishing a hash of the credential to issue onto the chain which
can be referenced later to verify. The user can choose to add this to their Dock wallet for easier
verification as needed. When the user would like to verify a user for some action, they create
a verification request to which the student then presents their credential which if it was the
correct one issued, would then verify successfully.

4

3. Related works - Proof of Personhood (PoP)

Proof of Personhood (PoP) protocols represent a groundbreaking approach in the domain of
digital identity verification, offering solutions that ensure each participant in a network is a
unique, verifiable individual without sacrificing their privacy. This paradigm is detailed com-
prehensively in a publication by Paradigm Research, which explores various methodologies
employed by PoP protocols, such as the use of biometric data, cryptographic techniques, and
even real-time gatherings to authenticate personhood. These methodologies are critical for mit-
igating sybil attacks, where a single entity could present multiple identities, and are essential
for the integrity of systems requiring assured individual participation, such as voting platforms
or digital economies.

Further, the Paradigm Research article discusses the implications of PoP protocols beyond
mere identity verification, suggesting their potential to fundamentally transform online inter-
action norms and security frameworks. By ensuring that each digital identity corresponds to
a single human user, PoP protocols can enhance the authenticity and accountability of online
actions, which is increasingly vital in areas like social media, financial transactions, and peer-
to-peer services. This shift towards more secure and privacy-preserving verification mechan-
isms indicates a significant evolution in handling digital identities, potentially offering a more
balanced approach between user privacy and systemic security. For professionals interested in
the technical and societal impacts of these protocols, the full text offers in-depth insights and
can be found on Paradigm Research’s website here.

5

4. Challenges in our Project

1. Interactions between our site and the blockchain

• First level bulleted list. This is the 1st item

• First level bulleted list. Itemize creates bulleted lists, and description creates un-
numbered lists.

2. Working with the Dock Certs API (in trial mode)
Due to financial restrictions with the API, our model only represents a proof of concept
of this type of user identification technology

• Limit on API calls; In a full-scale model this could be a challenging issue to work
around with multiple professors and numerous students per class.

• Credentials could only be issued via email (our implementation of issuing the cre-
dentials) to the account holder’s email; In a traditional model, we should be able to
send emails to anyone’s email ID.

3. Verification isn’t instant; Since this is being done on the blockchain, even a single device
(for one student) the verification process typically takes anywhere from 5 to 15 seconds.
With multiple students and multiple classrooms operating at the same time, this process
might take a long time to verify each and every student.

6

5. Code Documentation

The next few pages serves as a comprehensive site map for our website, delineating the structure
and arrangement of its various pages and sections. Additionally, it discusses the interaction
between the front-end and back-end code. It’s important to note that JavaScript code for CSS-
related functionalities is not the primary focus of this project.

To better understand the context of this report, it’s essential to grasp three key components:
Replit, Replit DB, and Flask.

1. Replit: Replit is an online integrated development environment (IDE) that allows users
to write, test, and deploy code directly from their web browser. It provides a convenient
platform for collaborative coding, offering features like real-time collaboration, version
control, and seamless deployment.

2. Replit DB: Replit DB is a simple and lightweight database service provided by Replit.
It enables developers to store and retrieve data persistently within their Replit projects.
Replit DB is particularly useful for small to medium-scale applications where a full-
fledged database management system might be excessive.

3. Flask: Flask is a lightweight and versatile web framework for Python. It simplifies
the process of building web applications by providing tools and libraries for tasks such
as routing, request handling, and template rendering. Flask is known for its simplicity
and flexibility, making it an excellent choice for developing web applications of various
scales and complexities.

Moreover, it’s pivotal to acknowledge that Replit, the platform serving as the host for our
code, has recently discontinued its provision of free deployment services. However, fret not,
as I shall furnish you with meticulous guidance on how to navigate and scrutinize the code.
For the interim, an alternative avenue is available for temporary deployment to facilitate testing
endeavors. With each iteration, a distinct URL will be generated, which we shall temporarily
denote as “picard.replit.dev” for easy reference.Furthermore, a critical aspect of this project
entails the transmission of user identification via email for the purpose of class enrollment.
This vital identification data is seamlessly conveyed through electronic mail. To streamline
the testing process and ensure an efficient workflow, all pertinent email communications are
channeled to a designated account. For access to this dedicated email repository, please nav-
igate to the following web address: Proton MailUpon reaching the Proton Mail platform, you
will be prompted to input credentials to gain entry. Please utilize the provided login details for
seamless access to the account:

Email Address: Quizzy499@proton.me

Password: 12345678

7

By adhering to these instructions, you will be equipped with the requisite tools and re-
sources to effectively engage with the project’s components. This meticulous approach not
only ensures ease of access but also fosters an environment conducive to comprehensive test-
ing and evaluation.

6. Home

This is the main landing page of the website, featuring a simple yet effective design. It com-
prises two prominent buttons: "Student Login" and "Teacher Login". These buttons serve as
gateways to the core functionalities of the site. For teachers, they provide access to content
creation, editing, class management, and other administrative tasks. On the student side, these
buttons grant access to quizzes created by teachers, facilitating seamless learning experiences.

6.1 Relevant code

On this page, there are essentially two types of relevant JavaScript functions that are triggered
depending on whether the "Teacher Login" or "Student Login" buttons are clicked.

1 < b u t t o n t y p e =" b u t t o n " c l a s s =" modal − a c t i o n " o n c l i c k =" window . l o c a t i o n . h r e f =
’ / t e a c h e r − l o g i n ’ "> Teache r Login < / b u t t o n >

2

3 < b u t t o n t y p e =" b u t t o n " c l a s s =" modal − a c t i o n " o n c l i c k =" window . l o c a t i o n . h r e f =
’ / s t u d e n t − l o g i n ’ "> S t u d e n t Login < / b u t t o n >

Listing 1: sending signals back to flask

URL

picard.replit.dev/teacher-login

These buttons utilize the window.location.href property to send a signal to the Flask server
(Python code) to load and execute code in the specific app route corresponding to either teacher
or student login.

7. Teacher Login

7.1 Relevant code

On this page, there are essentially two types of relevant JavaScript functions that are triggered
depending on whether the "Teacher Login" or "Student Login" buttons are clicked.

1 < b u t t o n t y p e =" b u t t o n " c l a s s =" modal − a c t i o n " o n c l i c k =" window . l o c a t i o n . h r e f =
’ / t e a c h e r − l o g i n ’ "> Teache r Login < / b u t t o n >

8

2

3 < b u t t o n t y p e =" b u t t o n " c l a s s =" modal − a c t i o n " o n c l i c k =" window . l o c a t i o n . h r e f =
’ / s t u d e n t − l o g i n ’ "> S t u d e n t Login < / b u t t o n >

Listing 2: sending signals back to flask

URL

picard.replit.dev/teacher-login

These buttons utilize the window.location.href property to send a signal to the Flask server
(Python code) to load and execute code in the specific app route corresponding to either teacher
or student login.

8. Teacher Login

As previously discussed, the HTML code activates a Flask route, specifically /teacher-login.
The function associated with this route is outlined below:

1 @app . r o u t e (’ / t e a c h e r − l o g i n ’)
2 d e f t e a c h _ l o g i n () :
3 r e t u r n r e n d e r _ t e m p l a t e (’ t e a c h e r _ l o g i n . h tml ’)

Listing 3: Flask Code

This function is responsible for loading the teacher_login.html file, thereby rendering the
Teacher Login page. In future references within this report, when I mention that “performing
X action renders Y page,” it should be interpreted that such an action is facilitated by a succinct
line of code similar to the one demonstrated above, which triggers the display of a new HTML
page.

9. User Sign-Up Process

When a user clicks the sign-up button, the following JavaScript code is triggered:

1 $. a j a x ({
2 t y p e : ’POST ’ ,
3 u r l : ’ / new_teach ’ ,
4 d a t a : JSON . s t r i n g i f y ({ username : username , e m a i l : emai l , password :

password }) ,
5 c o n t e n t T y p e : ’ a p p l i c a t i o n / j son ’ ,
6 s u c c e s s : f u n c t i o n (r e s p o n s e) {
7 c o n s o l e . l o g (’ Data s e n t s u c c e s s f u l l y ’ , r e s p o n s e) ;
8 / / Handle t h e r e s p o n s e from t h e s e r v e r i f needed
9 } ,

10 e r r o r : f u n c t i o n (xhr , s t a t u s , e r r o r) {

9

11 c o n s o l e . e r r o r (’ E r r o r s e n d i n g d a t a t o s e r v e r : ’ , e r r o r) ;
12 / / Handle e r r o r s i f needed
13 }
14 }) ;
15

16 $ (document) . r e a d y (f u n c t i o n () {
17 / / P l a c e h o l d e r f o r HTML page f o r s ign −up
18 / / Th i s p a r t o f t h e code w a i t s f o r t h e document t o be r e a d y and s e t s up

e v e n t l i s t e n e r s
19 $ (’ # f i n i s h ’) . change (f u n c t i o n () {
20 / / Check i f t h e f i n i s h checkbox i s checked and t h e welcome message

i s v i s i b l e
21 v a r username = $ (’ # username ’) . v a l () ;
22 v a r e m a i l = $ (’ # f e m a i l ’) . v a l () ;
23 v a r password = $ (’ # f p a s s ’) . v a l () ;
24 }) ;
25 }) ;

Listing 4: JavaScript code for handling user sign-up

This JavaScript code is responsible for handling the user sign-up process. It performs several
tasks:

• Sending Data to Server: Upon clicking the sign-up button, an AJAX request is made to
the server at the URL /new_teach. The request contains the user’s provided username,
email, and password in JSON format.

• Handling Success and Errors: The code includes success and error handling functions
to log messages to the console based on the response from the server. This allows for
appropriate actions to be taken based on whether the data was sent successfully or if an
error occurred.

• Event Handling: Additionally, the code sets up an event listener for changes to the
’finish’ checkbox. When the checkbox is changed, the code retrieves the values of the
username, email, and password fields from the sign-up form.

This JavaScript functionality integrates seamlessly with the HTML sign-up page and facilitates
communication with the server-side logic implemented in Flask. Speaking of the server-side
logic, when the client sends the sign-up information, it is processed by the following Flask
function:

1 @app . r o u t e (’ / new_teach ’ , methods =[’POST ’])
2 d e f new_teach () :
3 d a t a = r e q u e s t . g e t _ j s o n ()
4

5 # Check i f t h e t e a c h e r a l r e a d y e x i s t s i n t h e d a t a b a s e
6 e x i s t i n g _ t e a c h e r = db . g e t (d a t a [’ e m a i l ’])

10

7

8 i f e x i s t i n g _ t e a c h e r :
9 # I f t h e t e a c h e r a l r e a d y e x i s t s , r e t u r n a message i n d i c a t i n g t h a t

10 r e t u r n j s o n i f y ({ ’ message ’ : ’ Teache r a l r e a d y e x i s t s ’ })
11 e l s e :
12 # I f t h e t e a c h e r doesn ’ t e x i s t , i n s e r t a new r e c o r d i n t o t h e

d a t a b a s e
13 db [d a t a [’ e m a i l ’]] = { ’ username ’ : d a t a [’ username ’] , ’ e m a i l ’ : d a t a [’

e m a i l ’] }
14 # R e t u r n a s u c c e s s message
15 r e t u r n j s o n i f y ({ ’ message ’ : ’ Teache r added s u c c e s s f u l l y ’ })

Listing 5: Flask function for handling new teacher registration

This Flask function processes the received data, checks if the teacher already exists in the
database, and either adds a new record or returns a message indicating that the teacher already
exists.

On the dock blockchain wallet side of things, this process would be as simple as getting the
credential JSON file that would get sent to the student’s email and uploading it as follows:

Figure 2: Interactions between users, versifiers, and the blockchain

9.1 Logging In

When a user hits login, the following JavaScript code is executed:

1 < s c r i p t >
2 f u n c t i o n v a l i d a t e L o g i n () {
3 v a r username = $ (’ # username ’) . v a l () ;
4 v a r password = $ (’ # pass ’) . v a l () ;
5

6 $. a j a x ({
7 u r l : ’ / v a l i d a t e _ t e a c h e r _ l o g i n ’ ,

11

8 t y p e : ’POST ’ ,
9 c o n t e n t T y p e : ’ a p p l i c a t i o n / j son ’ ,

10 d a t a : JSON . s t r i n g i f y ({ username : username , password : password }) ,
11 s u c c e s s : f u n c t i o n (code) {
12 c o n s o l e . l o g (’ Data s e n t s u c c e s s f u l l y ’ , code) ;
13 v a r newUrl = ’ / t e a c h e r _ d a s h b o a r d ? username = ’ +

encodeURIComponent (username) ;
14 window . l o c a t i o n . h r e f = newUrl ; / / R e d i r e c t t o t h e new page
15 } ,
16 e r r o r : f u n c t i o n (xhr , s t a t u s , e r r o r) {
17 c o n s o l e . e r r o r (’ E r r o r : ’ , e r r o r) ;
18 / / Handle e r r o r
19 }
20 }) ;
21 }
22 < / s c r i p t >

Listing 6: JavaScript code for validating user login

This JavaScript code is responsible for validating the user’s login credentials. It performs
the following actions:

• Data Validation: Retrieves the entered username and password from the respective input
fields.

• AJAX Request: Sends an AJAX request to the server-side route /validate_teacher_login
with the provided username and password in JSON format.

• Handling Success: If the login is successful, the code redirects the user to the teacher
dashboard page with the username encoded in the URL for future reference.

• Handling Errors: If an error occurs during the login process, it is logged to the console
for debugging purposes.

It’s important to note that for the sake of expediency in this project, user information is
passed through the URL. However, in actual deployment scenarios, this method can introduce
security vulnerabilities such as cross-site scripting (XSS) attacks. Proper authentication mech-
anisms and session management should be implemented to ensure secure user authentication.

10. Teacher Account for Quizzy499

10.1 Teacher Dashboard

The teacher dashboard serves as the central interface for teachers to manage their classes and
quizzes. It is also the page they are met with after logging in. Below is the HTML code for the
teacher dashboard along with relevant backend interactions:

12

1 < !DOCTYPE html >
2 <html >
3 <head >
4 <meta c h a r s e t ="UTF−8 ">
5 <meta name=" v i e w p o r t " c o n t e n t =" wid th = dev i ce −width , i n i t i a l − s c a l e =1 .0 ">
6 < t i t l e >View Teache r C l a s s e s < / t i t l e >
7 < / head >
8 <body>
9 <h1>View Teache r C l a s s e s < / h1>

10 <p> C l i c k t h e b u t t o n s below : < / p>
11

12 < ! −− B u t to n t o view c l a s s e s −−>
13 < b u t t o n i d =" v i e w C l a s s e s B u t t o n ">View C l a s s e s < / b u t t o n >
14

15 < ! −− B u t to n t o add a new c l a s s −−>
16 < b u t t o n i d =" goToAddNewClassButton ">Add New C l a s s < / b u t t o n >
17

18 < ! −− B u t to n t o manage c l a s s e s −−>
19 < b u t t o n i d =" m a n a g e C l a s s e s B u t t o n ">Manage C l a s s e s < / b u t t o n >
20

21 < ! −− B u t to n t o manage q u i z z e s −−>
22 < b u t t o n i d =" manageQuizzesBut ton ">Manage Quizzes < / b u t t o n >
23

24 < s c r i p t s r c =" h t t p s : / / a j a x . g o o g l e a p i s . com / a j a x / l i b s / j q u e r y / 3 . 5 . 1 / j q u e r y .
min . j s ">< / s c r i p t >

25

26 < s c r i p t >
27 / / J a v a S c r i p t f u n c t i o n s f o r b u t t o n f u n c t i o n a l i t y
28 / / These f u n c t i o n s i n t e r a c t w i th backend F l a s k r o u t e s t o pe r fo rm

v a r i o u s a c t i o n s
29 < / s c r i p t >
30 < / body>
31 < / h tml >

Listing 7: HTML code for the teacher dashboard

The HTML code defines the structure of the teacher dashboard, including buttons for view-
ing classes, adding new classes, managing classes, and managing quizzes. These buttons trigger
JavaScript functions that interact with backend Flask routes to handle user actions.

Key aspects of the code include:

• Integration with Backend: The buttons on the dashboard trigger JavaScript functions,
which make AJAX requests to backend Flask routes to perform actions such as viewing
classes, adding new classes, managing classes, and managing quizzes.

• Dynamic Content Generation: The dashboard dynamically generates content based on
data fetched from the backend. For example, when a teacher clicks the "View Classes"

13

button, the frontend triggers a request to the backend to retrieve the teacher’s classes from
the database and display them on the dashboard.

• User Interaction: The dashboard provides a user-friendly interface for teachers to inter-
act with the application. Teachers can easily navigate between different functionalities
such as class management and quiz creation using the buttons provided.

When a button is pressed, it triggers a specific JavaScript function that interacts with the
backend Flask routes to perform the following actions:

• Add New Class: Opens a form for the teacher to input details and add a new class to the
system.

• Remove Classes: Allows the teacher to delete existing classes.

• Manage Class: Allows teacher to add/remove a student to a class, as well as create
quizzez for the class

These functionalities enhance the teacher’s ability to efficiently manage their classes and quizzes
within the system.

11. Adding a New Class

The "Add New Class" feature is a crucial part of the system, enabling teachers to dynamically
create new classes. This feature streamlines the process by providing a user-friendly interface
where teachers can input the name of the class they wish to add.

11.1 Flask Code for Adding a New Class

The Flask code responsible for handling the addition of a new class is encapsulated within the
‘register_class‘ function. This function is associated with the route ‘/g/<username>‘, where
‘<username>‘ represents the unique identifier of the teacher.

1 @app . r o u t e (’ / g / < username > ’ , methods =[’GET ’ , ’POST ’])
2 d e f r e g i s t e r _ c l a s s (username) :
3 i f r e q u e s t . method == ’POST ’ :
4 # R e t r i e v e t h e i n p u t t e x t from t h e form
5 i n p u t _ t e x t = r e q u e s t . form [’ i n p u t _ t e x t ’]
6

7 # G e n e r a t e a un i qu e i d e n t i f i e r f o r t h e c l a s s
8 d i d _ c r e a t i o n _ r e s p o n s e = d i d . c r e a t e _ d i d ()
9 db_key = d i d _ c r e a t i o n _ r e s p o n s e [’ d i d ’] [9 :]

10

11 # Add t h e new c l a s s t o t h e t e a c h e r ’ s l i s t o f c l a s s e s

14

12 db [username] [’ c l a s s e s ’] . append (i n p u t _ t e x t)
13

14 # P e r s i s t t h e u p d a t e d l i s t o f c l a s s e s
15

16 p r i n t (f " C l a s s ’{ i n p u t _ t e x t } ’ added f o r t e a c h e r ’{ username } ’ . ")
17 r e t u r n ’ C l a s s added s u c c e s s f u l l y . ’
18

19 # Serve t h e form t o i n p u t t h e c l a s s name
20 r e t u r n r e n d e r _ t e m p l a t e (’ add_new_c l a s s . h tml ’ , username= username)

Listing 8: Flask Code for Adding a New Class

This Flask route handles both POST and GET methods. When a teacher submits the form with
the class name, the route receives a POST request containing the input text. The function then
processes this input by creating a unique identifier for the class and adding it to the teacher’s
list of classes in the database. Additionally, it prints a confirmation message to the console. If
the route receives a GET request, indicating the need to render the form, it serves the HTML
template ‘add_new_class.html‘.

11.2 HTML for Adding a New Class

The HTML template ‘add_new_class.html‘ provides the interface for teachers to input the name
of the new class. It consists of a simple form with a text input field and a submit button.

1 < !DOCTYPE html >
2 <html >
3 <head >
4 < t i t l e >Simple F l a s k A p p l i c a t i o n < / t i t l e >
5 < s t y l e >
6 / * R e l e v a n t CSS : Omi t ted f o r b r e v i t y . R e f e r t o add_new_c l a s s . h tml

f o r d e t a i l s * /
7 < / s t y l e >
8 < / head >
9 <body s t y l e =" d i s p l a y : f l e x ; j u s t i f y − c o n t e n t : c e n t e r ; a l i g n − i t e m s : c e n t e r ;

h e i g h t : 100 vh ; margin : 0 ; ">
10 < d i v s t y l e =" d i s p l a y : f l e x ; f l e x − d i r e c t i o n : column ; a l i g n − i t e m s : c e n t e r ;

j u s t i f y − c o n t e n t : c e n t e r ; h e i g h t : 100 vh ; ">
11 <h1> E n t e r t h e name of t h e c l a s s you want t o c r e a t e : < / h1>
12 <form method="POST">
13 < i n p u t t y p e =" t e x t " c l a s s =" f o r m _ _ f i e l d " name=" i n p u t _ t e x t ">
14 < i n p u t t y p e =" s ubm i t " c l a s s =" b t n btn −− p r i m a r y btn −− i n s i d e

u p p e r c a s e " v a l u e =" Submit ">
15 < / form>
16 < / d i v >
17 < / body>
18 < / h tml >

Listing 9: HTML Markup for Adding a New Class

15

This HTML markup creates a visually appealing and intuitive form for teachers to interact
with. Upon submitting the form, the entered class name is sent to the Flask route for processing.

12. Delete Class

The "Delete Class" functionality allows teachers to remove classes from their list. Once a class
is deleted, it cannot be recovered, so caution is advised. Below is the Flask code and HTML
markup for implementing this feature.

12.1 Flask Code for Deleting a Class

The Flask route /delete_class handles the deletion of a class from the teacher’s list of
classes. It expects a POST request containing the name of the class to be deleted in the re-
quest body. The function then searches for the specified class in the teacher’s list and removes
it if found. If the operation is successful, it returns a JSON object with a status of 1; otherwise,
it returns a status of 0 along with an error message.

1 @app . r o u t e (’ / d e l e t e _ c l a s s ’ , methods =[’POST ’])
2 d e f d e l e t e _ c l a s s () :
3 # E x t r a c t t h e username from t h e s e s s i o n
4 username = s e s s i o n . g e t (’ username ’)
5

6 # E x t r a c t t h e c l a s s name from t h e r e q u e s t JSON
7 d a t a = r e q u e s t . j s o n
8 c l a s s _ n a m e = d a t a . g e t (’ c l a s s _ n a m e ’)
9

10 t r y :
11 # Se a r c h f o r t h e c l a s s i n t h e t e a c h e r ’ s l i s t o f c l a s s e s
12 f o r i , s u b l i s t i n enumera t e (db [username] [’ c l a s s e s ’]) :
13 i f s t r (s u b l i s t) == s t r (c l a s s _ n a m e) :
14 b r e a k
15 e l s e :
16 r a i s e V a l u e E r r o r (" C l a s s n o t found i n t e a c h e r ’ s l i s t ")
17

18 # D e l e t e t h e c l a s s from t h e t e a c h e r ’ s l i s t
19 d e l db [username] [’ c l a s s e s ’] [i]
20

21 # R e t u r n a s u c c e s s s t a t u s
22 r e t u r n j s o n i f y ({ " s t a t u s " : 1})
23

24 e x c e p t E x c e p t i o n as e :
25 # R e t u r n an e r r o r s t a t u s a l o n g wi th t h e e r r o r message
26 e r r o r _ m e s s a g e = s t r (e)

16

27 r e t u r n j s o n i f y ({ " s t a t u s " : 0 , " e r r o r _ m e s s a g e " : e r r o r _ m e s s a g e })

Listing 10: Flask Code for Deleting a Class

12.2 HTML Markup for Deleting a Class

The HTML template delete_class.html provides a warning message about the irreversib-
ility of class deletion and displays a list of the teacher’s classes along with a "Delete" button
for each class. When the "Delete" button is clicked, it triggers a JavaScript function to send
an AJAX request to the Flask route /delete_class with the name of the class to be deleted.
Upon successful deletion, the page is reloaded to reflect the updated list of classes.

1 < !DOCTYPE html >
2 <html l a n g =" en ">
3 <head >
4 < ! −− CSS and J a v a S c r i p t i m p o r t s o m i t t e d f o r b r e v i t y −−>
5 < / head >
6 <body>
7 < ! −− Warning message −−>
8 <h1 c l a s s =" warning −message ">Warning : Once a c l a s s i s d e l e t e d , i t i s

gone f o r e v e r ! < / h1>
9

10 < ! −− L i s t o f c l a s s e s wi th d e l e t e b u t t o n s −−>
11 < u l >
12 {% f o r c l a s s _ n a m e i n c l a s s e s %}
13 < l i >
14 < d i v >
15 {{ c l a s s _ n a m e [0] }}< / span >
16 < b u t t o n c l a s s =" b u t t o n −49 " da t a − c l a s s =" {{ c l a s s _ n a m e }} "

> D e l e t e < / b u t t o n >
17 < / d i v >
18 < / l i >
19 {% e n d f o r %}
20 < / u l >
21

22 < ! −− J a v a S c r i p t f u n c t i o n t o h a n d l e c l a s s d e l e t i o n −−>
23 < s c r i p t >
24 f u n c t i o n d e l e t e C l a s s (c lassName) {
25 / / Send an AJAX r e q u e s t t o F l a s k t o d e l e t e t h e c l a s s
26 f e t c h (’ / d e l e t e _ c l a s s ’ , {
27 method : ’POST ’ ,
28 h e a d e r s : {
29 ’ Conten t −Type ’ : ’ a p p l i c a t i o n / j son ’
30 } ,
31 body : JSON . s t r i n g i f y ({ c l a s s _ n a m e : c lassName })
32 })

17

33 . t h e n (r e s p o n s e => {
34 i f (r e s p o n s e . ok) {
35 / / Reload t h e page a f t e r s u c c e s s f u l d e l e t i o n
36 l o c a t i o n . r e l o a d () ;
37 } e l s e {
38 c o n s o l e . e r r o r (’ F a i l e d t o d e l e t e c l a s s : ’ , r e s p o n s e .

s t a t u s T e x t) ;
39 }
40 })
41 . c a t c h (e r r o r => {
42 c o n s o l e . e r r o r (’ E r r o r d e l e t i n g c l a s s : ’ , e r r o r) ;
43 }) ;
44 }
45

46 / / Add e v e n t l i s t e n e r s t o d e l e t e b u t t o n s
47 document . q u e r y S e l e c t o r A l l (’ . b u t t o n −49 ’) . f o r E a c h (b t n => {
48 b t n . a d d E v e n t L i s t e n e r (’ c l i c k ’ , f u n c t i o n () {
49 c o n s t c lassName = t h i s . g e t A t t r i b u t e (’ da t a − c l a s s ’) ;
50 i f (c o n f i r m (’ Are you s u r e you want t o d e l e t e c l a s s ’ +

className + ’ ? ’)) {
51 d e l e t e C l a s s (c lassName) ;
52 }
53 }) ;
54 }) ;
55 < / s c r i p t >
56 < / body>
57 < / h tml >

Listing 11: HTML Markup for Deleting a Class

13. Add Student

The "Add Student" functionality allows teachers to add students to their classes. When a student
is added, an email notification is sent to the teacher, and a credential is created for the student
to access the class material. Below is the Flask code and HTML markup for implementing this
feature.

13.1 Flask Code for Adding a Student

The Flask route /AddStudent handles the addition of a student to a class. It expects a POST re-
quest containing the name of the class (className) and the name of the student (studentName).
Upon receiving the request, the function retrieves the student’s username (v) from the database,
creates a credential using the create_credential function, and sends an email notification to
the teacher with the credential details.

18

1 @app . r o u t e (’ / AddStudent ’ , methods =[’POST ’])
2 d e f AddStudent () :
3 d a t a = r e q u e s t . g e t _ j s o n ()
4 s t u d e n t _ n a m e = d a t a . g e t (’ s tudentName ’)
5 v = db [s t u d e n t _ n a m e] [’ username ’]
6 x = c r e a t e _ c r e d e n t i a l (db [d a t a . g e t (’ c lassName ’)] , s tuden t_name , v , d a t a .

g e t (’ c lassName ’))
7 s e n d _ m a i l _ w i t h _ j s o n (’ f a d i l . amiruddin1@gmai l . com ’ , ’New S t u d e n t Data ’ , ’

New s t u d e n t d a t a added t o t h e d a t a b a s e ’ , x)
8 r e t u r n x

Listing 12: Flask Code for Adding a Student

13.2 HTML Markup for Managing Classes

The HTML template Manage_Class_Menu.html provides a user interface for teachers to man-
age their classes. It displays a list of classes with buttons to add or remove students. When the
"Add Student" button is clicked, an input field is shown where the teacher can enter the student’s
name. Upon pressing the Enter key, an AJAX request is sent to the Flask route /AddStudent

to add the student to the class. Similarly, when the "Create Quiz" button is clicked, a request is
sent to another route for quiz creation.

1 < !DOCTYPE html >
2 <html l a n g =" en ">
3 <head >
4 < ! −− CSS and J a v a S c r i p t i m p o r t s o m i t t e d f o r b r e v i t y −−>
5 < / head >
6 <body>
7 < ! −− C o n t a i n e r f o r c l a s s management −−>
8 < d i v c l a s s =" c o n t a i n e r ">
9 < ! −− T i t l e i n d i c a t i n g t h e s e l e c t e d c l a s s −−>

10 <h1 i d =" c l a s s T i t l e " c o n t e n t e d i t a b l e > S e l e c t A C l a s s < / h1>
11

12 < ! −− B u t t on s e t f o r s e l e c t i n g a c l a s s −−>
13 < u l c l a s s =" shadow − b u t t o n − s e t " i d =" b u t t o n S e t ">
14 {% f o r c l a s s _ n a m e i n c l a s s e s %}
15 < l i >
16 < b u t t o n o n c l i c k =" addClassToURL (’ { { c l a s s _ n a m e [0] } } ’) ">

{{ c l a s s _ n a m e [0] }}< / b u t t o n >
17 < / l i >
18 {% e n d f o r %}
19 < / u l >
20

21 < ! −− B u t t on s e t f o r managing s t u d e n t s (h i dd en by d e f a u l t) −−>
22 < u l c l a s s =" shadow − b u t t o n − s e t " i d =" s t u d e n t B u t t o n S e t " s t y l e =" d i s p l a y :

none ; ">

19

23 < l i c l a s s =" g r e e n ">
24 < b u t t o n o n c l i c k =" a d d S t u d e n t () ">Add S t u d e n t < / b u t t o n >
25 < / l i >
26 < l i c l a s s =" r e d ">
27 < b u t t o n o n c l i c k =" removeS tuden t () "> C r e a t e Quiz< / b u t t o n >
28 < / l i >
29 < / u l >
30 < / d i v >
31

32 < ! −− J a v a S c r i p t i m p o r t s and s c r i p t o m i t t e d f o r b r e v i t y −−>
33 < / body>
34 < / h tml >

Listing 13: HTML Markup for Managing Classes

This documentation provides insights into how the "Add Student" feature is implemented
in Flask and HTML, including the handling of requests and the user interface for managing
classes.Before I can talk about the authetication side of this application it is important that we
have a understanding on how the backend of th student side of this application works

14. Student Login

The student login feature enables students to log in to the application using their credentials.
Upon successful login, students gain access to the quizzes available to them.

14.1 Implementation Details

The login functionality is implemented using Flask routes and HTML forms. When a student
submits their login credentials through the login form, the submitted data is processed on the
server-side to authenticate the user.

14.1.1 Flask Route

1 @app . r o u t e (’ / l o g i n ’ , methods =[’GET ’ , ’POST ’])
2 d e f l o g i n () :
3 i f r e q u e s t . method == ’POST ’ :
4 # P r o c e s s l o g i n form d a t a
5 # A u t h e n t i c a t e u s e r
6 # R e d i r e c t t o a p p r o p r i a t e page
7 e l s e :
8 # Render l o g i n page

Listing 14: Flask Route for Student Login

20

14.1.2 HTML Form

The HTML form for the login page includes input fields for username and password. Upon
submission, the form sends a POST request to the login route.

1 <form method="POST" a c t i o n =" / l o g i n ">
2 < i n p u t t y p e =" t e x t " name=" username " p l a c e h o l d e r =" Username " r e q u i r e d >
3 < i n p u t t y p e =" password " name=" password " p l a c e h o l d e r =" Password " r e q u i r e d >
4 < b u t t o n t y p e =" s ubm i t ">Login < / b u t t o n >
5 < / form>

Listing 15: HTML Form for Student Login

15. Student Sign-Up

15.1 Registration Route

The /signup route handles the registration of new students. It accepts POST requests con-
taining the student’s username, email, and GNumber. The GNumber serves as the primary
key, allowing teachers to add students to classes and facilitating the backend’s ability to send
verification information to the student.

1 @app . r o u t e (" / s i g n u p " , methods =[’POST ’])
2 d e f s i g n u p () :
3 i f r e q u e s t . method == ’POST ’ :
4 # R e t r i e v e s t u d e n t r e g i s t r a t i o n d a t a from t h e r e q u e s t
5 d a t a = r e q u e s t . g e t _ j s o n ()
6 username = d a t a [’ username ’]
7 e m a i l = d a t a [’ e m a i l ’]
8 gnumber = d a t a [’ gnumber ’]
9

10 # Check i f t h e GNumber a l r e a d y e x i s t s i n t h e d a t a b a s e
11 i f gnumber i n db :
12 r e t u r n j s o n i f y ({ ’ e r r o r ’ : ’GNumber a l r e a d y e x i s t s ’ })
13

14 # S t o r e t h e s t u d e n t ’ s i n f o r m a t i o n i n t h e d a t a b a s e
15 db [gnumber] = { ’ username ’ : username , ’ e m a i l ’ : e m a i l }
16 r e t u r n j s o n i f y ({ ’ message ’ : ’ R e g i s t r a t i o n s u c c e s s f u l ’ })

Listing 16: Flask Route for Student Registration

The /signup route allows students to register by providing their username, email, and
GNumber. The GNumber acts as the unique identifier for each student, enabling teachers to
add students to classes and allowing the backend to send verification information when needed.

21

16. Quiz Retrieval

To retrieve the quiz data, an AJAX request is made to the server. This request fetches the quiz
questions, answer options, and correct answers from the backend.

16.1 Implementation Details

The quiz retrieval functionality involves handling AJAX requests on the server-side and re-
sponding with the appropriate quiz data.

16.1.1 Flask Route

1 @app . r o u t e (’ / g e t _ q u i z ’ , methods =[’GET ’])
2 d e f g e t _ q u i z () :
3 # R e t r i e v e q u i z d a t a from t h e d a t a b a s e
4 # R e t u r n q u i z d a t a a s JSON r e s p o n s e

Listing 17: Flask Route for Quiz Retrieval

16.1.2 AJAX Request

The AJAX request is made from the client-side to the get_quiz route using JavaScript.

1 f e t c h (’ / g e t _ q u i z ’)
2 . t h e n (r e s p o n s e => r e s p o n s e . j s o n ())
3 . t h e n (d a t a => {
4 / / P r o c e s s q u i z d a t a
5 }) ;

Listing 18: AJAX Request for Quiz Retrieval

17. Quiz Submission

After attempting a quiz, students can submit their answers for evaluation. The submitted an-
swers are processed on the server-side to calculate the score.

17.1 Implementation Details

The quiz submission functionality involves processing the submitted answers and comparing
them against the correct answers stored in the database.

22

17.1.1 Flask Route

1 @app . r o u t e (’ / s u b m i t _ q u i z ’ , methods =[’POST ’])
2 d e f s u b m i t _ q u i z () :
3 # P r o c e s s s u b m i t t e d answer s
4 # C a l c u l a t e s c o r e
5 # R e t u r n s c o r e t o t h e c l i e n t

Listing 19: Flask Route for Quiz Submission

17.1.2 HTML Form

The HTML form for submitting the quiz includes radio buttons for selecting answers to each
question. Upon submission, the form sends a POST request to the submit_quiz route.

1 <form method="POST" a c t i o n =" / s u b m i t _ q u i z ">
2 < ! −− Quiz q u e s t i o n s wi th r a d i o b u t t o n s −−>
3 < b u t t o n t y p e =" s ubm i t ">Submit< / b u t t o n >
4 < / form>

Listing 20: HTML Form for Quiz Submission

18. Quiz Generation

Quiz questions are dynamically generated based on the quiz selected by the student. The quiz
data is retrieved from the database and rendered on the quiz page.

1

2 f u n c t i o n g e n e r a t e Q u i z () {
3 c o n s t c o n t a i n e r = document . ge tE lemen tById (’ qu iz − c o n t a i n e r ’) ;
4 a l l Q u e s t i o n s . f o r E a c h ((i tem , i n d e x) => {
5 c o n s t q u e s t i o n D i v = document . c r e a t e E l e m e n t (’ div ’) ;
6

7 q u e s t i o n D i v . c lassName = ’ q u e s t i o n ’ ;
8 q u e s t i o n D i v . innerHTML = ‘<p c l a s s =" u n d e r l i n e d u n d e r l i n e d −−

t h i c k ">${ i n d e x + 1 } . ${ i t em . q u e s t i o n }< / p> ‘ ;
9 O b j e c t . e n t r i e s (i t em . answer s) . f o r E a c h (([key , v a l u e]) => {

10 c o n s t l a b e l = document . c r e a t e E l e m e n t (’ l a b e l ’) ;
11 l a b e l . innerHTML = ‘< i n p u t t y p e = " r a d i o " i d =" f − o p t i o n "

b u t t o n c l a s s =" b u t t o n −89 " r o l e =" b u t t o n " name=" q u e s t i o n $ { i n d e x } " v a l u e =" ${
key } "> ${ v a l u e }< br >< br > ‘ ;

12

13 q u e s t i o n D i v . appendCh i ld (l a b e l) ;
14 }) ;
15 c o n t a i n e r . appendCh i ld (q u e s t i o n D i v) ;
16 }) ; }

Listing 21: Dynamic Quiz Generation

23

19. Adding and Verifying a student in the class.

Now that we have gathered all the necessary information, let’s delve into the process of adding
and authenticating students. To illustrate this, let’s start by revisiting the teacher sign-in process
and logging in as a teacher account you have previously created. Then, proceed to add a class
and press enter. Afterward, navigate to the manage class section and press "add student."
Enter the GNumber from earlier, and after clicking enter, within a few seconds, the ProtonMail
account mentioned earlier should receive an email containing a JSON file.

Next, download that JSON file to the mobile device with the Dock Cert app installed. Now,
navigate to the credential section of the Dock Cert app and import the JSON file. At this point,
you should have an ID linked to the class.

Whenever a user attempts to take a quiz, a QR code requesting an ID will pop up before
they can proceed. To complete the verification process, present the ID along with the name of
the class.

Let’s break down how this process is implemented in terms of code to gain a better under-
standing.

20. Dockcert API Integration

The Dockcert API is utilized for creating digital credentials for students. Here’s how it works:

1. API Authentication: The application authenticates with the Dockcert API using an API
key. This key is stored securely and used to authorize requests made to the API.

1 # API key s t o r e d s e c u r e l y
2 a p i _ k e y = " y o u r _ d o c k c e r t _ a p i _ k e y "
3 h e a d e r s = {
4 ’ A u t h o r i z a t i o n ’ : f ’ B e a r e r { a p i _ k e y } ’ ,
5 ’ Conten t −Type ’ : ’ a p p l i c a t i o n / j s o n ’
6 }
7

Listing 22: API Authentication

24

2. Creating Credentials: When a new student signs up or is added to a class by a teacher,
the application generates a credential object containing relevant information such as the
student’s GNumber, full name, and the name of the class. This information is necessary
for issuing the credential.

1 d e f c r e a t e _ c r e d e n t i a l (i s s u e r _ d i d , gnumber , name , c l a s s n a m e) :
2 c r e d e n t i a l = {
3 " an ch o r " : True ,
4 " d i s t r i b u t e " : True ,
5 " r e c i p i e n t E m a i l " : " r e c i p i e n t @ e x a m p l e . com" ,
6 " c r e d e n t i a l " : {
7 " t y p e " : [" B a s i c C r e d e n t i a l "] ,
8 " name " : name ,
9 " s u b j e c t " : {

10 " i d " : gnumber ,
11 " FullName " : name ,
12 " CourseName " : c l a s s n a m e
13 } ,
14 " i s s u e r " : i s s u e r _ d i d
15 }
16 }
17

18 r e s p o n s e = r e q u e s t s . p o s t (f " { d o c k c e r t . BASE_URL} / c r e d e n t i a l s " ,
h e a d e r s = h e a d e r s , j s o n = c r e d e n t i a l)

19 r e t u r n r e s p o n s e . j s o n ()
20

Listing 23: Creating Credentials

3. Credential Generation: The application sends a POST request to the Dockcert API
endpoint responsible for creating credentials. This request includes the credential object
as JSON data.

4. Response Handling: Upon receiving the request, the Dockcert API processes the in-
formation and generates a digital credential for the student. The API returns a response
containing the newly created credential, typically in JSON format.

5. Credential Storage: The application may store the generated credential securely for
future reference. This could involve storing it in a database or associating it with the
student’s account.

25

21. Mailchimp API Integration

The Mailchimp API is used for sending emails with JSON attachments. Here’s how it’s integ-
rated into the application:

1. Mailchimp Account Setup: The application’s backend is configured to interact with
the Mailchimp API. This involves creating an account on the Mailchimp platform and
obtaining an API key, which is used to authenticate requests.

1 # Mailchimp API key s t o r e d s e c u r e l y
2 a p i _ k e y = " y o u r _ m a i l c h i m p _ a p i _ k e y "
3

Listing 24: Mailchimp Account Setup

2. Sending Emails: When certain events occur, such as a student signing up or a teacher
adding a student to a class, the application triggers an email notification. The email
contains important information or attachments (e.g., JSON files containing digital cre-
dentials).

1 d e f s e n d _ m a i l _ w i t h _ j s o n (to , s u b j e c t , body , j s o n _ d a t a) :
2 # Conve r t t h e JSON d a t a t o a s t r i n g
3 j s o n _ s t r i n g = j s o n . dumps (j s o n _ d a t a)
4

5 # C r e a t e t h e e m a i l
6 e n c o d e d _ j s o n = base64 . b64encode (j s o n _ s t r i n g . encode ())
7 a t t a c h m e n t = mt . At t achmen t (f i l e n a m e =" d a t a . j s o n " , c o n t e n t =

e n c o d e d _ j s o n)
8 mai l = mt . Mail (
9 s e n d e r =mt . Address (e m a i l =" sender@example . com" , name=" Sender

Name") ,
10 t o =[mt . Address (e m a i l = t o)] ,
11 s u b j e c t = s u b j e c t ,
12 html =body ,
13 a t t a c h m e n t s =[a t t a c h m e n t] ,
14 c a t e g o r y =" I n t e g r a t i o n T e s t " ,
15)
16

17 # Send t h e e m a i l
18 c l i e n t = mt . M a i l t r a p C l i e n t (t o k e n =" y o u r _ m a i l c h i m p _ a p i _ k e y ")
19 c l i e n t . send (ma i l)
20

Listing 25: Sending Emails

3. API Authorization: The request to the Mailchimp API includes the API key obtained

26

during account setup. This key serves as a form of authentication, allowing the applica-
tion to send emails on behalf of the configured Mailchimp account.

4. Email Delivery: Upon receiving the request, the Mailchimp API processes the email and
attachments, ensuring they meet any formatting requirements. It then sends the email to
the specified recipient(s) using the configured Mailchimp account.

By integrating both the Dockcert API and the Mailchimp API into the application, it be-
comes possible to automate the process of creating digital credentials for students and sending
them via email, streamlining administrative tasks for teachers and improving the user experi-
ence for students.

22. Verification Process

The verification process involves checking if a student has a valid digital credential issued
through the Dockcert API. Here’s how it works:

1. QR Code Authentication: When a student attempts to access a quiz, a QR code request-
ing their ID is displayed. The student must present their ID, which is typically a digital
credential obtained through the Dockcert API.

2. Credential Verification: Upon receiving the student’s ID, the application verifies its
authenticity by querying the Dockcert API. This involves sending a request to the API
endpoint responsible for retrieving credential information.

3. API Request: The application sends an HTTP request to the Dockcert API endpoint,
passing the student’s ID as a parameter. The API responds with the credential information
associated with the provided ID.

4. Response Handling: The application receives the API response containing the credential
information. It parses the response to extract relevant data such as the student’s name,
class, and any additional details.

5. Access Granted: If the credential is valid and the student’s information matches the
expected criteria, access to the quiz is granted. The student can proceed to take the quiz
without any further authentication steps.

23. Retrieving Verified Users

To retrieve a list of verified users who have scanned a given QR code and possess valid digital
credentials, the application can utilize subprocess in Python to execute a command that interacts
with the Dockcert API. Here’s an example Python code snippet demonstrating this:

27

1 i m p o r t s u b p r o c e s s
2

3 command = ’ ’ ’
4 API_KEY=" y o u r _ d o c k c e r t _ a p i _ k e y "
5

6 c u r l ’ h t t p s : / / ap i − t e s t n e t . dock . i o / p roof − t e m p l a t e s / d0155104 −c2d0 −4 fe2 −
b5e8 −f79ddb570047 / h i s t o r y ? o f f s e t =0& l i m i t =64 ’ \

7 −H ’ a c c e p t : a p p l i c a t i o n / j s o n ’ \
8 −H "DOCK−API−TOKEN: $API_KEY" | j q − r ’ . [] | . p r e s e n t a t i o n .

c r e d e n t i a l s [] . name ’
9 ’ ’ ’

10

11 # Execu te t h e command
12 r e s u l t = s u b p r o c e s s . run (command , s h e l l =True , s t d o u t = s u b p r o c e s s . PIPE , s t d e r r

= s u b p r o c e s s . PIPE , t e x t =True)
13 p r i n t (r e s u l t . s t d o u t)

Listing 26: Retrieving Verified Users

This code snippet executes a command using the subprocess module to query the Dockcert
API for the history of scanned QR codes and retrieve the names of verified users. The result is
then printed to the console for further processing or display.

28

	Introduction - The Problem
	Importance of addressing this issue

	Application of Blockchain technology
	Blockchain interaction with dock.io
	Our Process

	Related works - Proof of Personhood (PoP)
	Challenges in our Project
	Code Documentation
	Home
	Relevant code

	Teacher Login
	Relevant code

	Teacher Login
	User Sign-Up Process
	Logging In

	Teacher Account for Quizzy499
	Teacher Dashboard

	Adding a New Class
	Flask Code for Adding a New Class
	HTML for Adding a New Class

	Delete Class
	Flask Code for Deleting a Class
	HTML Markup for Deleting a Class

	Add Student
	Flask Code for Adding a Student
	HTML Markup for Managing Classes

	Student Login
	Implementation Details
	Flask Route
	HTML Form

	Student Sign-Up
	Registration Route

	Quiz Retrieval
	Implementation Details
	Flask Route
	AJAX Request

	Quiz Submission
	Implementation Details
	Flask Route
	HTML Form

	Quiz Generation
	Adding and Verifying a student in the class.
	Dockcert API Integration
	Mailchimp API Integration
	Verification Process
	Retrieving Verified Users

